Time constraints on the origin of large volume basalts derived from O-isotope and trace element mineral zoning and U-series disequilibria in the Laki and Grímsvötn volcanic system
نویسندگان
چکیده
The 1783–1784 AD fissure eruption of Laki (Iceland) produced 15 km of homogeneous basaltic lavas and tephra that are characterized by extreme (3‰) O-depletion relative to normal mantle. Basaltic tephra erupted over the last 8 centuries and as late as in November 2004 from the Grímsvötn central volcano, which together with Laki are a part of a single volcanic system, is indistinguishable in δO from Laki glass. This suggests that all tap a homogeneous and long-lived low-δO magma reservoir. In contrast, we observe extreme oxygen isotope heterogeneity (2.2–5.2‰) in olivine and plagioclase contained within these lavas and tephra, and disequilibrium mineral-glass oxygen-isotope fractionations. Such low-δOglass values, and extreme 3‰ range in δOolivine have not been described in any other unaltered basalt. The energy constrained mass balance calculation involving oxygen isotopes and major element composition calls for an origin of the Laki–Grímsvötn quartz tholeiitic basaltic melts with δO=3.1‰ by bulk digestion of low-δO hydrated basaltic crust with δO=−4‰ to +1‰, rather than magma mixing with ultra-low-δO silicic melt. The abundant Pleistocene hyaloclastites, which were altered by synglacial meltwaters, can serve as a likely assimilant material for the Grímsvötn magmas. The (Ra / Th) activity ratio in Laki lavas and 20th century Grímsvötn tephras is 13% in-excess of secular equilibrium, but products of the 20th century Grímsvötn eruptions have equilibrium (Pb / Ra). Modeling of oxygen isotope exchange between disequilibrium phenocrysts and magmas, and these short-lived U-series nuclides yields a coherent age for the Laki–Grímsvötn magma reservoir between 100 and 1000 yrs. We propose the existence of uniquely fingerprinted, low-δO, homogeneous, large volume, and long-lived basaltic reservoir beneath the Laki–Grímsvötn volcanic system that has been kept alive in its position above the center of the Icelandic mantle plume. Melt generation, crustal assimilation, magma storage and homogenization all took place in only a few thousands of years at most. © 2006 Elsevier B.V. All rights reserved.
منابع مشابه
The origin of the Bentonite deposits of Tashtab Mountains (Central Iran): Geological, Geochemical, and Stable Isotope evidences
Bentonite deposits of economic interest are widespread in Tashtab Mountains (Khur), east of Isfahan province, Iran. Several bentonite deposits have been developed in this area as a result of Eocene volcanic alteration. These deposits are classified as Khur bentonite horizon. XRD analyses reveal that alteration products consist of Na-montmorillonite, kaolinite, quartz, calcite, and crystobalite....
متن کاملPetrography, geochemistry and petrogenesis of Damavand volcano: Comparison of different volcanic generations
1-Introduction Damavand volcano was formed by explosive and non-explosive eruptions on the old eroded rock units (Mesozoic and older) of Central Alborz during the Quaternary period and formed two huge cone (Old and Young Damavand). Davidson et al. (2004) determined the time of Old-Damavand activity from 1800 to 800 thousand years ago by measuring Ar/Ar and U-Th/He methods. According to their ...
متن کاملIn the Case of Maden Complex, Geochemical Constraints on the Origin and Tectonic Implication of Eocene Magmatism in SE Turkey
The origin and geodynamic setting of the Maden Complex, which is situated in the Bitlis–Zagros Suture Zone in the Southeast Anatolian Orogenic Belt, is still controversial due to lack of systematic geological and geochemical data. Here we present new whole rock major–trace–rare earth element data from the Middle Eocene volcanic rocks exposed in Maden Complex and discuss their origin in the ligh...
متن کاملThe influence of source heterogeneity on the U–Th–Pa–Ra disequilibria in post-glacial tholeiites from Iceland
We investigate the relative influence of mantle upwelling velocity and source heterogeneity on the melting rates recorded by Th–U, Pa–U and Ra–Th disequilibria in post-glacial tholeiites from Iceland’s main rift areas. The measured (Th/U) ratios range from 1.085 to 1.247, the (Pa/U) ratios from 1.333 to 1.925, and the (Ra/Th) ratios from 0.801 to 1.218. A general positive correlation between Th...
متن کاملDistribution and geochemical variations among paleogene volcanic rocks from the north-central Lut block, eastern Iran
The Lut block in eastern Iran is a micro-continental block within the convergent orogen between the Arabian, Eurasian and Indian plates. Large areas of the north-central, eastern, and western Lut block are covered by volcanic rocks of Paleogene, Neogene and Quaternary age. Peak volcanic activity took place in the north-central part of the Lut block during the Eocene, and then dramatically decr...
متن کامل